Down-regulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance.

نویسندگان

  • R J Li
  • G S Zhang
  • Y H Chen
  • J F Zhu
  • Q J Lu
  • F J Gong
  • W Y Kuang
چکیده

BACKGROUND To identify novel proteins involved in multidrug resistance in chronic myeloid leukemia (CML). MATERIALS AND METHODS Comparative proteomics was used to screen multidrug resistance-related proteins from K562 and K562/A02; the differently expressed proteins were further confirmed by western blot and real-time PCR. short hairpin RNA (shRNA) assay was applied to determine the relationship between candidate protein and adriamycin resistance. Bisulfite sequencing was carried out to assess methylation status of candidate multidrug resistance-related gene promoter. K562/A02 was treated with 5-azacytidine or trichostatin A (TSA); multidrug resistance phenotype and corresponding protein or gene changes were detected. RESULTS Seventeen proteins with altered abundances of more than twofold were detected, among which mitochondrial ATPase in K562/A02 was significantly down-regulated. Suppressing mitochondrial ATPase by shRNA could enhance adriamycin resistance and antiapoptosis activity of K562. The promoter hypermethylation in mitochondrial ATPase was found to be attributed to the adriamycin-resistant phenotype of both K562/A02 (methylated frequency 18.18%) and CML primary cells in accelerated phase (methylated frequency 7.95%) or blast crisis (methylated frequency 26.59%). Inhibition of hypermethylation increased adriamycin sensitivity of K562/A02. A synergistic effect on reversing adriamycin-resistant phenotype was obtained when 5-azacytidine was combined with TSA. CONCLUSION Down-regulation of mitochondrial ATPase can lead to adriamycin resistance in CML and the mechanism is associated with DNA methylation regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deregulation of Mitochondrial ATPsyn-β in Acute Myeloid Leukemia Cells and with Increased Drug Resistance

The mechanisms underlying the development of multidrug resistance in acute myeloid leukemia are not fully understood. Here we analyzed the expressions of mitochondrial ATPsyn-β in adriamycin-resistant cell line HL-60/ADM and its parental cell line HL-60. Meanwhile we compared the differences of mitochondrial ATPsyn-β expression and ATP synthase activity in 110 acute myeloid leukemia (AML, non-M...

متن کامل

Investigation of SMAD3 and SMAD4 genes expression in CML patients and K562 cell line and association with chronic myeloid leukemia

Aim and Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder with cytogenetic characterization of the abnormal Philadelphia chromosome. This chromosome results from a reciprocal translocation between chromosomes 9 and 22. This is an important signaling pathway in the process of cancer cell proliferation and apoptosis, as well as the pathogenesis of TGF-β disease, i...

متن کامل

Down regulation of GTPase regulator associated with the focal adhesion kinase (GRAF) gene expression in patients with acute myeloblastic leukemia

Introduction: GTPase regulator associated with focal adhesion kinase (GRAF) is a recently identified GTPase activating protein that has the tumor suppressor properties. However, the expression level of GRAF in leukemia had received less attention. The main purpose of this research was the evaluating of the expression level of GRAF in patients with acute myeloid leukemia (AML). Materials and met...

متن کامل

Analysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate

Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...

متن کامل

HOXA4 Gene Promoter Hypermethylation as an Epigenetic Mechanism Mediating Resistance to Imatinib Mesylate in Chronic Myeloid Leukemia Patients

Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of oncology : official journal of the European Society for Medical Oncology

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2010